Systematic investigation of nominated candidate markers in CSF (and serum) for PD
CSF ALPHA-SYNUCLEIN IS NOT A GOOD DIAGNOSTIC AND PROGRESSION MARKER (ALONE)

We therefore need better diagnostic and progression marker
Due to the clinical heterogeneity / misdiagnoses etc. better biomarker OR a better biomarker panel needs to be identified and validated
IDENTIFICATION OF BIOMARKER CANDIDATES BY LITERATURE REVIEW FROM THE PD BIOMARKER DISCOVERY WORKSHOP

Potential PD Biomarkers for Evaluation in PPMI

- **Axonal Integrity:**
 - Neurofilament light chain (blood and CSF)
 - Neurofilament heavy chain
 - Tau, p-tau
 - Vlip-1

- **Synaptic Integrity/Function:**
 - Granins other than neurogranin
 - SNAP-25 and other SNARE-related proteins (Munc18-1, synaptoctrelin, syntaxin1a & 1b)
 - Neurotransmitter metabolites

- **Glial:**
 - YKL-40
 - GFAP, S100
 - TREM2
 - Cytokines/chemokines (Brit is investigating this)

- **LRRK2-Related:**
 - Exosomal LRRK2, total LRRK2, pS935 LRRK2
 - phospho-RABs
 - Mitochondrial DNA damage, secretion

- **GBA-Related/Lysosomal:**
 - Gcase activity (Tom is investigating this)
 - Other lysosomal proteins (LAMP-1, LAMP-2)

- **ECM and Other:**
 - Serpins (Serpin A1, Neitin G1)
 - Complement
 - UCL-1
 - Neurotrophic factors
SYSTEMATIC INVESTIGATION OF 8 (10) NOMINATED CANDIDATE MARKERS (ON COMMERCIALLY AVAILABLE PLATFORMS) FOR STATE, RATE, FATE AND TRAIT IN CSF (AND SERUM) OF

I: 500 CROSS SECTIONAL COHORT OF MOVEMENT DISORDERS
II: LONGITUDINAL (DENOPA, PPMI)

Step I (ongoing):
-Kassel cohort I:
Cross sectional, single center cohort
PD (n=139) and other movement disorders [Progressive Supranuclear Palsy (PSP; n=38), Multiple System Atrophy (MSA, n=15), Normal Pressure Hydrocephalus (NPH, n=36), Dementia with Lewy Bodies (DLB), other neurological controls (NC; n=195)]

Step II: best candidates validated longitudinal samples (DeNoPa, PPMI etc.)
SYSTEMATIC INVESTIGATION OF 8 (10) NOMINATED CANDIDATE MARKERS (ON COMMERCIALLY AVAILABLE PLATFORMS) FOR STATE, RATE, FATE AND TRAIT IN CSF (AND SERUM)

Step I: cross sectional assessment of measurements

<table>
<thead>
<tr>
<th>Nominator</th>
<th>Axonal integrity</th>
<th>Glial marker</th>
<th>α-Synuclein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quanterix</td>
<td>NFL*</td>
<td>pNFH</td>
<td>YKL-40</td>
</tr>
<tr>
<td>Proposed assays</td>
<td>Quanterix</td>
<td>Eur immun</td>
<td>R&D Systems</td>
</tr>
<tr>
<td>matrix</td>
<td>CSF and Serum</td>
<td>CSF</td>
<td>CSF and Serum</td>
</tr>
<tr>
<td>NC vs. PD</td>
<td>CSF p<0.05</td>
<td>CSF and serum p<0.05</td>
<td>CSF and serum p<0.05</td>
</tr>
</tbody>
</table>

* Quanterix Human Neurology 4-Plex (Quanterix): NFL, GFAP, UCHL-1 and tau protein

Ongoing analyses: Hb measurements in CSF (despite normal Erythrocyte count), S100 B analyses, correlation with Hoehn and Yahr stage in PD, reassessment of diagnoses, combined analyses
LONGITUDINAL COHORT: DENOPA

Parkinson Patients
- Baseline Analysis: n=159
- 2-year Follow-up: n=147
 - Drop-out: n=8 lost for follow-up, n=4 died
 - Other neurological disorders (OND) with Parkinsonism (n=24): PSP (n=4), MSA-P (n=4), essential tremor (n=3), vascular Parkinsonism (n=2), Corticobasal Degeneration (n=1), cerebellar tremor (n=1), unclear diagnoses (n=8)
 - n=123
 - Drop out: n=5 lost, n=1 died
 - 4-year Follow-up: n=117
 - Drop out: n=6 lost, n=7 died
 - 6-year Follow-up: n=104
 - Drop out: n=6 lost, n=7 died

Healthy Controls
- n=110
- n=107
- Drop-out: n=1 lost for follow-up, n=2 died
- n=106
- Drop out: n=2 lost, n=4 died
- n=94
- Drop out: n=6 lost, n=3 died

REM Sleep Behaviour Disorder
- n=36
 - Drop out: n=2 lost, n=0 died
 - n=20 (%)
 - Drop out: n=1 developed tremor
 - n=9 (%)

Conversion
- n=1
 - PD (n=2)
 - DLB (n=1)

Autopsies
- n=2 after 6-year Follow-up
 - PD (n=3)
 - MSA (n=1)
 - PSP (n=1)
 - NN (n=2)
LONGITUDINAL CSF NFL IN PD VS HC

CSF NFL baseline PD vs. HC: p<0.05
Slope PD vs. HC: p>0.05

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>baseline</th>
<th>24FU</th>
<th>48FU</th>
<th>72FU</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>135</td>
<td>73</td>
<td>51</td>
<td>50</td>
<td>33</td>
</tr>
<tr>
<td>HC</td>
<td>100</td>
<td>47</td>
<td>30</td>
<td>27</td>
<td>21</td>
</tr>
<tr>
<td>total</td>
<td>235</td>
<td>130</td>
<td>81</td>
<td>77</td>
<td>54</td>
</tr>
</tbody>
</table>
CSF NFL is high in other neurological disorders (differential diagnoses of PD) and PD? Therefore CSF NFL in PPMI can help to identify other neurological/differential diagnoses. CSF NFL significantly correlates with MDS-UPDRS total (p=0.0091) and MDS-UPDRS III (p=0.00091).
No longitudinal difference in all three groups (p>0.05)